PyTorch深度学习实战

发布时间:2022-04-01;阅读次数:1287 次

1、封面介绍

PyTorch深度学习实战

2、出版时间

2022年02月

3、推荐理由

虽然很多深度学习工具都使用Python,但PyTorch 库是真正具备Python 风格的。对于任何了解NumPy 和scikit-learn 等工具的人来说,上手PyTorch 轻而易举。PyTorch 在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。

本书是教你使用 PyTorch 创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括 PyTorch张量 API、用 Python 加载数据、监控训练以及将结果进行可视化展示。

本书主要内容: (1)训练深层神经网络; (2)实现模块和损失函数; (3)使用 PyTorch Hub 预先训练的模型; (4)探索在 Jupyter Notebooks 中编写示例代码。

本书适用于对深度学习感兴趣的 Python 程序员。了解深度学习的基础知识对阅读本书有一定的帮助,但读者无须具有使用 PyTorch 或其他深度学习框架的经验。

4、作者简介

伊莱.史蒂文斯(Eli Stevens)职业生涯的大部分时间都在美国硅谷的初创公司工作,从软件工程师(网络设备制造业)到首席技术官(开发肿瘤放疗软件)。在本书出版时,他正在汽车自动驾驶行业从事机器学习相关工作。

卢卡.安蒂加(Luca Antiga)于21 世纪初担任生物医学工程研究员。2010 年到2020 年间,他是一家人工智能工程公司的联合创始人和首席技术官。他参与了多个开源项目,包括PyTorch 的核心模块。最近,他作为联合创始人创建了一家总部位于美国的初创公司,专注于数据定义软件的基础设施。

托马斯.菲曼(Thomas Viehmann)是一名德国慕尼黑的机器学习和PyTorch 的专业培训师和顾问,也是PyTorch 核心开发人员。

提醒:此资源仅限面试天下注册用户享有,欢迎大家的注册,希望这个平台给大家带来福气!

免责声明:本站所有资源来源于热心网友的提供,仅供读者预览及学习交流使用,下载后请24小时内删除,如果喜欢请购买正版资源! 原作者如果认为本站侵犯了您的版权,请联系站长,站长会立即删除!